domingo, 20 de setembro de 2009

Polinômios


Polinômios
Para polinômios podemos encontrar várias definições diferentes como: Polinômio é uma expressão algébrica com todos os termos semelhantes reduzidos. Polinômio é um ou mais monômios separados por operações.
As duas podem ser aceitas, pois se pegarmos um polinômio encontraremos nele uma expressão algébrica e monômios separados por operações.

• 3xy é monômio, mas também considerado polinômio, assim podemos dividir os polinômios em monômios (apenas um monômio), binômio (dois monômios) e trinômio (três monômios).
• 3x + 5 é um polinômio e uma expressão algébrica.

Como os monômios, os polinômios também possuem grau e é assim que eles são separados. Para identificar o seu grau, basta observar o grau do maior monômio, esse será o grau do polinômio.

Com os polinômios podemos efetuar todas as operações: adição, subtração, divisão, multiplicação, potenciação.
Determinar as raízes de polinómios, ou "resolver equações algébricas", é um dos problemas mais antigos da matemática. Alguns polinômios, tais como f(x) = x2 + 1, não possuem raízes dentro do conjunto dos números reais. Se, no entanto, o conjunto de candidatos possíveis for expandido ao conjunto dos números imaginários, ou seja, se se passar a tomar em conta o conjunto dos números complexos, então todo o polinómio (não-constante) possui pelo menos uma raiz (teorema fundamental da álgebra).
Existe uma diferença entre a aproximação de raízes e a determinação de fórmulas concretas que as definem. Fórmulas para a determinação de raízes de polinómios de grau até ao 4º são conhecidas desde o século XVI (ver equação quadrática, Gerolamo Cardano, Niccolo Fontana Tartaglia). Mas fórmulas para o 5º grau têm vindo a escapar aos investigadores já há algum tempo. Em 1824, Niels Henrik Abel provou que não pode haver uma fórmula geral (envolvendo apenas as operações aritméticas e radicais) para a determinação de raízes de polinómios de grau igual ou superior ao 5º em termos de coeficientes (ver teorema de Abel-Ruffini). Este resultado marcou o início da teoria de Galois, onde se aplica a um estudo detalhado das relações entre raízes de polinómios.

Nenhum comentário:

Postar um comentário